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ABSTRACT

Robotic manipulation in open-world settings demands not only the execution of
tasks but also the ability to detect and learn from failures during execution. While
recent advances in vision-language models (VLMs) and large language models
(LLMs) have enhanced robots’ spatial reasoning and problem-solving capabilities,
these models often struggle to recognize and reason about failures, limiting their
effectiveness in real-world applications. We introduce AHA, an open-source VLM
specifically designed to detect and reason about failures in robotic manipulation
through natural language. By framing failure detection as a free-form reasoning
task, AHA identifies failures and generates detailed explanations adaptable across
various robots, tasks, and environments in both simulation and real-world scenarios.
To fine-tune AHA, we developed FailGen, a scalable simulation framework that
procedurally generates AHA dataset—the first large-scale dataset of robotic failure
trajectories—by perturbing successful demonstrations from the RLBench simulator.
Despite being trained solely on the AHA dataset, AHA generalizes effectively to
real-world failure datasets, different robotic systems, and unseen tasks. It surpasses
the second-best model by 10.3% and exceeds the average performance of all six
compared models—including five state-of-the-art VLMs and one model employing
in-context learning—by 35.3% across multiple metrics and datasets. Moreover, we
integrate AHA into three VLM/LLM-assisted manipulation frameworks. Its natural
language failure feedback enhances error recovery and policy performance through
methods such as improving reward functions with Eureka reflection, optimizing
task and motion planning, and verifying sub-task success in zero-shot robotic
manipulation. Our approach achieves an average task success rate 21.4% higher
than GPT-4 models.

1 INTRODUCTION

In recent years, foundation models have made remarkable progress across various domains, demon-
strating their ability to handle open-world tasks (Driess et al., 2023; Alayrac et al., 2022; Achiam
et al., 2023; Zhang et al., 2023). These models, including large language models (LLMs) and
vision-language models (VLMs), have shown proficiency in interpreting and executing human lan-
guage instructions (Ouyang et al., 2022), producing accurate predictions and achieving strong task
performance. However, despite these advancements, key challenges remain—particularly with hal-
lucinations, where models generate responses that deviate from truth. Unlike humans, who can
intuitively detect and adjust for such errors, these models often lack the mechanisms for recognizing
their own mistakes (Lin et al., 2021; Chen et al., 2021; Heyman, 2008).

Learning from failure is a fundamental aspect of human intelligence. Whether it’s a child learning
to skate or perfecting a swing, the ability to reflect on and adjust based on feedback is essential for
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improvement (Young, 2009; Gopnik, 2020; Heyman, 2008). In machine learning, this process is
mirrored through techniques like Reinforcement Learning with Human Feedback (RLHF) (Ouyang
et al., 2022; Christiano et al., 2017), where human oversight helps guide models toward desired
outcomes. This feedback loop plays a critical role in aligning generative models with real-world
objectives. However, a crucial question persists: How can we equip these models with the capability
to detect and learn from their own errors without human in the loop?

This need is particularly pressing in robotics, where foundation models such as VLMs and LLMs
are increasingly used to address open-world tasks. Recent advancements have enabled these models
to tackle spatial reasoning, object recognition, and multimodal problem-solving—skills vital for
robotic manipulation (Reid et al., 2024; OpenAI, 2024; Yuan et al., 2024; Chen et al., 2024; Wang
et al., 2023b). VLMs and LLMs are already being integrated to automate reward generation for
reinforcement learning (Ma et al., 2023; 2024), develop task plans for motion planning (Curtis et al.,
2024), and even generate zero-shot robot trajectories (Huang et al., 2023; 2024a; Duan et al., 2024;
Huang et al., 2024b). While these models excel at task execution, they often face challenges in
detecting and reasoning over failures—skills that are crucial for navigating dynamic and complex
environments. For example, if a robot drops an object mid-task, a human observer would immediately
recognize the error and take corrective action. How can we empower robots with similar capabilities,
allowing them not only to perform tasks but also to detect and learn from their mistakes?

In this work, we introduce AHA, an open-source vision-language model (VLM) that detects and
reasons about failures in robotic manipulation using natural language. By framing failure detection
as a free-form reasoning task, our model not only identifies failures but also generates detailed
explanations. This approach allows AHA to adapt to various robots, camera viewpoints, tasks, and
environments in both simulation and real-world scenarios. To fine-tune the VLM, we developed
FailGen, an automated data pipeline that procedurally generates the AHA dataset, a large-scale
dataset of simulated robotic manipulation failures. Despite being fine-tuned only on the AHA dataset,
AHA demonstrates strong generalization to real-world failure datasets, different robotic systems,
and unseen tasks, as evaluated on three separate datasets not included in the fine-tuning. FailGen’s
flexible data generation pipeline integrates seamlessly with various simulators, enabling scalable
procedural generation of failure demonstrations.

Upon fine-tuning AHA, we also benchmarked it against six state-of-the-art VLMs, both open-source
and proprietary, evaluating across four metrics on three datasets. AHA outperformed GPT4o model
by more than 20.0% on average across datasets and metrics, and by over 43.0% compared to LLaVA-
v1.5-13B (Liu et al., 2023a), the base model from which AHA is derived. This demonstrates AHA’s
exceptional ability to detect and reason about failures in robotic manipulation across embodiment and
domains. Moreover, AHA integrates seamlessly into VLM-guided robotic systems, providing failure
feedback to improve reward functions through Eureka reflection, enhancing task and motion planning,
and verifying sub-task success in zero-shot robotic manipulation. Across three downstream tasks,
our approach achieved an average task success rate 21.4% higher than GPT4 models, highlighting
the effectiveness of AHA in providing accurate natural language failure feedback to aid with
improving downstream task performance through error correction.

In summary, our contributions are threefold: (1) developing FailGen, a scalable simulation frame-
work for procedural generation of failure demonstrations, and curating the AHA dataset, the first
large-scale robot failure dataset; (2) AHA, a new open-source VLM for reasoning about failures
in manipulation tasks, outperforming six proprietary and open-source models; and (3) integration
of AHA into three VLM/LLM-assisted manipulation frameworks, demonstrating that its natural
language failure feedback improves error recovery and policy performance in downstream tasks.

2 RELATED WORK

Failure Detection in Robotic Manipulation. Failure detection and reasoning have long been studied
in the Human-Robot Interaction (HRI) community (Ye et al., 2019; Khanna et al., 2023) and in works
leveraging Task and Motion Planning (TAMP) (Garrett et al., 2020). With the recent widespread
adoption of LLMs and VLMs in robot manipulation systems—either for generating reward functions
or synthesizing robot trajectories (Ma et al., 2023; 2024) in a zero-shot manner—the importance of
detecting task failures has regained prominence (Huang et al., 2023; Duan et al., 2024; Skreta et al.,
2024; Ha et al., 2023). Most modern approaches focus on using off-the-shelf VLMs or LLMs as

2



Figure 1: AHA is a Vision-Language Model designed to detect and reason about failures in robotic
manipulation. As an instruction-tuned VLM, it can enhance task performance in robotic applications
that utilize VLMs for reward generation, task planning, or sub-task verification. By incorporating AHA
into the reasoning pipeline, these applications can achieve accelerated and improved performance.

success detectors (Ma et al., 2022; Ha et al., 2023; Wang et al., 2023a; Duan et al., 2024), and some
employ instruction-tuning of VLMs to detect failures (Du et al., 2023). However, these methods are
often limited to binary success detection and does not provide language explanations for why failures
occur. Our framework introduces failure reasoning in a new formulation, generating language-based
explanations of failures to aid robotics systems that leverage VLMs and LLMs in downstream tasks.

Foundation Models for Robotic Manipulation. In recent years, leveraging foundation models for
robotic manipulation has become an active area of research. This interest is driven by the effectiveness
of VLMs in interpreting open-world semantics and their adaptability to cross-task generalization
(Duan et al., 2022; Hu et al., 2023; Firoozi et al., 2023; Urain et al., 2024). Two main approaches
have emerged in this domain. The first approach utilizes VLMs and LLMs in a promptable manner.
Many works focus on designing sophisticated visual prompts to aid low-level action generation,
enabling robots to perform tasks based on prompts derived from visual inputs (Liu et al., 2024a;
Huang et al., 2024a;b). The second approach involves instruction-tuning specialized VLMs for
domain-specific tasks in robotics (Li et al., 2024). For instance, RoboPoint (Yuan et al., 2024)
has been instruction-tuned for spatial affordance prediction, while Octopi (Yu et al., 2024) is an
instruction-tuned VLM designed for physical reasoning over objects using tactile image inputs. These
specialized VLMs are general-purpose, capable of generalizing beyond their training data distribution,
and can be seamlessly integrated into downstream manipulation pipelines. Our approach aligns with
the second line of thought. We develop a scalable method for generating large-scale instruction-tuning
data in simulation to fine-tune general-purpose VLMs specialized in detecting and reasoning about
failures in robotic manipulation. Moreover, our problem formulation extends beyond manipulation
tasks, making it transferable to other domains in robotics.

Data Generation in Robotics There have been many methods in robotic manipulation that automate
data generation of task demonstrations at scale (Mandlekar et al., 2023; Hoque et al., 2024), whether
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Table 1: AHA datasets for instruction-tuning. We combined the AHA dataset, our large-scale robotic
manipulation failure dataset, with VQA and object detection data. By incorporating this diverse data
mix into the fine-tuning process, AHA is able to reason about failures in robotic manipulation across
different domains, embodiments, and tasks.

Source The AHA dataset (Train) VQA (Liu et al., 2023a) LVIS (Gupta et al., 2019)

Quantity 49K 665K 100K

Query For the given sub-tasks, first determine
it has succeed by choosing from ["yes",
"no"] and then explain the reason why
the current sub-tasks has failed.

What is the cat doing in the image? Find all instances of drawer.

Answer No, The robot gripper rotated with an
incorrect roll angle

The cat is sticking its head into a vase
or container, possibly drinking water or
investigating the interior of the item.

[(0.41, 0.68, 0.03, 0.05), (0.42, 0.73,
0.04, 0.08), ...]

for training behavior cloning policies, instruction-tuning VLMs (Yuan et al., 2024), or curating
benchmarks for evaluating robotic policies in simulation (Xie et al., 2024; Pumacay et al., 2024). A
well-known example is MimicGen (Mandlekar et al., 2023), which automates task demonstration
generation via trajectory adaptation by leveraging known object poses. Additionally, works like
RoboPoint use simulation to generate general-purpose representations for robotic applications,
specifically for fine-tuning VLMs. Similarly, systems like The Colosseum Pumacay et al. (2024)
automate data generation for curating benchmarks in robotic manipulation. Our approach aligns
more closely with RoboPoint, as we also leverage simulation to generate data for instruction-tuning
VLMs. However, unlike RoboPoint, we focus on synthesizing robotic actions in simulation rather
than generating representations like bounding boxes or points.

3 THE AHA DATASET

We leveraged FailGen to procedurally generate the AHA dataset from RLBench tasks (James
et al., 2020) and used it for the instruction-tuning of AHA. In this section, we begin by categorizing
common failure modes in robotics manipulation and defining a taxonomy of failures in Section 3.1.
Next, we explain how this taxonomy is used with FailGen to automate the data generation for the
AHA dataset in simulation in Section 3.2.

3.1 FAILURE MODES IN ROBOTIC MANIPULATION

To curate an instruction-tuning dataset of failure trajectories for robotic manipulation tasks, we began
by systematically identifying prevalent failure modes. Our approach involved a review of existing
datasets, including DROID (Khazatsky et al., 2024) and Open-X Embodiment (Padalkar et al.,
2023), as well as an analysis of policy rollouts from behavior cloning models. We examined failures
occurring in both teleoperated and autonomous manipulations. Building upon prior works, such as
REFLECT (Liu et al., 2023d), we formalized a taxonomy encompassing seven distinct failure modes
commonly observed in robotic manipulation: incomplete grasp, inadequate grip retention, misaligned
keyframe, incorrect rotation, missing rotation, wrong action sequence, and wrong target object.

Incomplete Grasp (No_Grasp) Failure: No_Grasp is an object-centric failure that occurs when
the gripper reaches the desired grasp pose but fails to close before proceeding to the next keyframe.

Inadequate Grip Retention (Slip) Failure: Slip is an object-centric failure that happens after
the object has been successfully grasped. As the gripper moves the object to the next task-specific
keyframe, the grip loosens, causing the object to slip from the gripper.
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Misaligned keyframe (Translation) Failure: This action-centric failure occurs when the gripper
moves toward a task keyframe, but a translation offset along the X, Y, or Z axis causes the task to fail.

Incorrect Rotation (Rotation) Failure: Rotation is an action-centric failure that occurs when
the gripper reaches the desired translation pose for the sub-task keyframe, but there is an offset in
roll, yaw, or pitch, leading to task failure.

Missing Rotation (No_Rotation) Failure: No_Rotation is an action-centric failure that
happens when the gripper reaches the desired translation pose but fails to achieve the necessary
rotation (roll, yaw, or pitch) for the sub-task, resulting in task failure.

Wrong Action Sequence (Wrong_action) Failure: Wrong_action is an action-centric failure
that occurs when the robot executes actions out of order, performing an action keyframe before the
correct one. For example, in the task put_cube_in_drawer, the robot moves the cube toward
the drawer before opening it, leading to task failure.

Wrong Target Object (Wrong_object) Failure: Wrong_object is an object-centric failure
that occurs when the robot acts on the wrong target object, not matching the language instruction.
For example, in the task pick_the_red_cup, the gripper picks up the green cup instead, leading
to task failure.

3.2 IMPLEMENTATION OF THE AHA DATASET

The AHA dataset is generated with RLBench, utilizing its keyframe-based formulation to dynam-
ically induce failure modes during task execution. RLBench natively provides keyframes for task
demonstrations, which enables flexibility in both object manipulation (handling tasks with varying
objects) and the sequence of actions (altering the execution order of keyframes). Building on this
foundation, we leverage FailGen, our custom environment wrapper to wrap around RLBench that
allows for task-specific trajectory modifications through keyframes perturbations, object substitutions,
and reordering of keyframe sequences. This framework systematically generates failure trajectories
aligned with the taxonomy defined in Section 3.1, yielding a curated dataset of 49k failure-question
pairs.

To generate the AHA dataset, we systematically sweep through all keyframes in each RLBench task,
considering all potential configurations of the seven failure modes that could result in overall task
failure. By leveraging the success condition checker in the simulation, we procedurally generate
YAML-based configuration files by sweeping through each failure mode across all keyframes. These
files provide details on potential failure modes, parameters (such as distance, task sequence, gripper
retention strength, etc.), and corresponding keyframes that FailGen should perturb to induce
failure. Additionally, we incorporate language templates to describe what the robot is doing between
consecutive keyframes. Using these descriptions along with the failure modes, we can systematically
curate question-answer pairs for each corresponding failure mode.

For specific failure modes, No_Grasp is implemented by omitting gripper open/close commands
at the relevant keyframes, effectively disabling gripper control. Slip introduces a timed re-
lease of the gripper shortly after activation. Translation and Rotation perturb the position
and orientation of a keyframe, respectively, while No_Rotation constrains the keyframe’s rota-
tional axis. Wrong_Action reorders keyframe activations to simulate incorrect sequencing, and
Wrong_Object reassigns the keyframes intended for one object to another, maintaining the relative
pose to mimic improper object manipulation. Using this pipeline, we also successfully generated
a failure dataset from ManiSkill (Mu et al., 2021) and adapted RoboFail (Liu et al., 2023d) for the
evaluation of AHA. This further demonstrates the generalizability and versatility of FailGen in
generating failure cases across different simulation environments.

4 METHOD

This section outlines the failure reasoning problem formulation (Sec.4.1) used to fine-tune and
evaluate AHA. Next, we discuss the curated data mix used for co-finetuning AHA (Sec.4.2). Finally,
we detail the instruction fine-tuning pipeline and the model architecture selection for AHA (Sec.4.3).
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Table 2: Examples of detection and reasoning over failures by various VLMs. We sampled one
evaluation data point from each of the three evaluation datasets and compared the reasoning predic-
tions generated by different state-of-the-art VLMs alongside our AHA-13B. Our model consistently
provides the most semantically similar reasoning to the ground-truth answers for the given queries.

Evaluation Datasets AHA dataset (Train) Maniskill-Fail RoboFail (Liu et al., 2023d)

Question At the current sub-task, the robot is
picking up the hockey stick. First,
determine whether it has succeeded
by choosing from ["yes", "no"]. If
not, explain why it failed?

At the current sub-task, the robot
is picking up the red cube. First,
determine whether it has succeeded
by choosing from ["yes", "no"]. If
not, explain why it failed?

At the current sub-task, the robot
is placing the apple into the bowl.
First, determine whether it has suc-
ceeded by choosing from ["yes",
"no"]. If not, explain why it failed?

LLaVA 1.5-13B The image displays a time-lapse se-
quence of a robotic arm grabbing a
hockey stick.

Based on the image, it depicts a dif-
ferent sub-task of a robot grasping
a red block.

For the pick-up task, i would say
the robot arm has succeeded in
picking.

GPT4o No, the robot arm fails to hold the
hockey stick securely.

Yes, the robot arm has successfully
picked up the red block.

No, the robot gripper failed to pick
up the bowl in the second frame.

Gemini 1.5 Flash Yes. Yes, Yes, Yes. Frame 1, no the gripper is not
grasping the bowl and move it.

AHA-13B (Ours) No, the robot slip the object out of
its gripper.

No, the robot gripper fails to close
the gripper.

No, this is not the right action se-
quence for the task.

Ground-truth Answer No, the robot slip the object out of
its gripper.

No,the robot gripper fails to close. No, this is not the right action se-
quence for the task.

4.1 FAILURE REASONING FORMULATION

Unlike previous works (Liu et al., 2023d; Skreta et al., 2024; Duan et al., 2024) that primarily focus
on detecting task success as binary classification problem, we approach failure reasoning by first
predicting a binary success condition ("Yes" or "No") of the given sub-task based on a language
specification and an input image prompt. If the answer is "No," the VLM is expected to generate a
concise, free-form natural language explanation detailing why the task is perceived as a failure.

To formulate failure reasoning, we prompt the VLMs to analyze the trajectory failures at the current
sub-task and provide reasoning for why or what led to the failure. We define manipulation task
trajectories as a series of sub-tasks {S0, S1, S2, . . . , St}, where each sub-task is represented by two
consecutive keyframes. For example, in a task like "stacking cubes," a sub-task could represent a
primitive action, such as ’picking up the cube.’ For the input formulation used in VLMs for instruction
fine-tuning and evaluation, we required a query prompt with an input image for prompting the VLMs.
The query prompt was generated using a template corresponding to the current sub-task the robot is
performing. To capture the temporal relationships within the action sequence, the input image was
constructed by selecting a single frame that represents the robot’s trajectory up to the current sub-task
and concatenating it with frames from other viewpoints in the rollout sequence, this is depicted in
Table 2.

This input frame is built by concatenating all keyframes up to the current sub-task in temporal order,
from left to right, with any remaining keyframes replaced by white image patches. To mitigate
occlusions, we also included all the available camera viewpoints, concatenating them alongside the
temporal sequence, and provide a detailed task description in the prompt, as illustrated in Table 1
(left image). The image data is structured as a matrix I, where each row corresponds to a different
camera viewpoint {V0, V1, . . . , Vn} and each column captures the temporal sequence of keyframes
{S0, S1, S2, . . . , St}. The matrix I is defined as follows:

I =


IV0S0

IV0S1
. . . IV0St

IV1S0
IV1S1

. . . IV1St

...
...

. . .
...

IVnS0
IVnS1

. . . IVnSt


6



Figure 2: Overview of AHA Pipeline. (Top) The data generation for AHA is accomplished by
taking a normal task trajectory in simulation and procedurally perturbing all keyframes using our
taxonomy of failure modes. Through FailGen, we systematically alter keyframes to synthesize
failure demonstrations conditioned on the original tasks. Simultaneously, we generate corresponding
query and answer prompts for each task and failure mode, which are used for instruction-tuning.
(Bottom) The instruction-tuning pipeline follows the same fine-tuning procedure as LLaVA-v1.5 Liu
et al. (2023a), where we fine-tune only the LLM base model—in this case, LLaMA-2-13B and the
projection linear layers, while freezing the rest of the mode

Where IViSj
represents the image from viewpoint Vi at sub-task Sj , this formulation for curating

images serves as a general approach for formatting all datasets used for fine-tuning and evaluation.
This structured input enables consistent handling of data across different tasks and viewpoints.
Overall, our failure reasoning problem is to prompt VLM with sub-task discription and keyframe
trajectory image to predict the success condition and language description of failure reason for each
sub-task, as shown in Table 2.

4.2 SYNTHETIC DATA FOR INSTRUCTION-TUNING

To facilitate the instruction-tuning of AHA, we needed to systematically generate failure demonstration
data. To achieve this, we developed FailGen, an environment wrapper that can be easily applied to
any robot manipulation simulator. FailGen systematically perturbs successful robot trajectories
for manipulation tasks, transforming them into failure trajectories with various modes of failure as
depicted in Figure 2 (Top image). Using FailGen, we curated the AHA dataset (Training) dataset
by alternating across 79 different tasks in the RLBench simulator, resulting in 49k failure image-text
pairs. Furthermore, following proper instruction-tuning protocols for VLMs (Liu et al., 2023a) and
building on prior works (Brohan et al., 2023; Yuan et al., 2024), co-finetuning is crucial to the success
of instruction fine-tuning of VLMs. Therefore, in addition to the AHA dataset, we co-finetuned
AHA with general visual question-answering (VQA) datasets sourced from internet data, which helps
models retain pre-trained knowledge. Specifically, we included the VQA dataset (Liu et al., 2023a),
containing 665k conversation pairs, and the LVIS dataset (Gupta et al., 2019), which comprises 100k
instances with predicted bounding box centers and dimensions, as summarized in Table 1.
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Table 3: Quantitative Evaluation on Failure Detection and Reasoning. AHA-13B was evaluated and
benchmarked against three open and three closed-source VLMs and one visual prompting baseline across three
evaluation datasets. AHA-13B outperformed all other VLMs on every evaluation dataset and nearly every
evaluation metric, with the exception of the AHA (Test) dataset, where GPT-4o exceeded AHA-13B by less than
3%.

Models Evaluation Datasets Evaluation Metrics
ROUGEL ↑ Cosine Similarity ↑ Binary Success(%) ↑ LLM Fuzzy Match ↑

LLaVA-v1.5-13B (Liu et al., 2023a)
AHA dataset (Test set) 0.061 0.208 0.080 0.648

ManiSkill-Fail 0.000 0.208 0.022 0.270
RoboFail (Liu et al., 2023d) 0.000 0.203 0.000 0.404

LLaVA-NeXT-34B (Liu et al., 2024b)
AHA dataset (Test set) 0.013 0.231 0.017 0.626

ManiSkill-Fail 0.001 0.195 0.007 0.277
RoboFail (Liu et al., 2023d) 0.018 0.188 0.017 0.351

Qwen-VL (Bai et al., 2023)
AHA dataset (Test set) 0.000 0.161 0.000 0.426

ManiSkill-Fail 0.037 0.301 0.116 0.034
RoboFail (Liu et al., 2023d) 0.000 0.159 0.000 0.050

Gemini-1.5 Flash (Reid et al., 2024)
AHA dataset (Test set) 0.120 0.231 0.371 0.566

ManiSkill-Fail 0.003 0.121 0.014 0.032
RoboFail (Liu et al., 2023d) 0.000 0.042 0.000 0.393

GPT-4o
AHA dataset (Test set) 0.251 0.308 0.500 0.784

ManiSkill-Fail 0.142 0.335 0.688 0.453
RoboFail (Liu et al., 2023d) 0.114 0.318 0.554 0.438

GPT-4o-ICL (5-shot)
AHA dataset (Test set) 0.226 0.380 0.611 0.776

ManiSkill-Fail 0.341 0.429 0.971 0.630
RoboFail (Liu et al., 2023d) 0.236 0.429 0.571 0.418

AHA-7B
AHA dataset (Test set) 0.434 0.574 0.691 0.695

ManiSkill-Fail 0.609 0.680 1.000 0.532
RoboFail (Liu et al., 2023d) 0.204 0.394 0.625 0.439

AHA-13B (Ours)
AHA dataset (Test set) 0.446 0.583 0.702 0.768

ManiSkill-Fail 0.600 0.681 1.000 0.633
RoboFail (Liu et al., 2023d) 0.280 0.471 0.643 0.465

Table 4: Ablation on Different Base LLMs for Fine-Tuning. We fine-tuned AHA-13B using both LLaMA-
2-13B and Vicuna-1.5-13B as base LLM models. The quantitative results show that the average performance
difference between the two models is less than 2.5%, indicating that our failure formulation and the AHA dataset
are effective regardless of the base model selection.

AHA dataset (Test) ManiSkill-Fail RoboFail
Models ROUGEL ↑ Cos Sim ↑ BinSucc(%) ↑ Fuzzy Match ↑ ROUGEL ↑ Cos Sim ↑ BinSucc(%) ↑ Fuzzy Match ↑ ROUGEL ↑ Cos Sim ↑ BinSucc(%) ↑ Fuzzy Match ↑

AHA-13B (Llama-2) 0.446 0.583 0.702 0.768 0.600 0.681 1.000 0.633 0.280 0.471 0.643 0.465
AHA-13B (Vicuna-1.5) 0.458 0.591 0.709 0.695 0.574 0.657 1.000 0.851 0.290 0.468 0.661 0.605

4.3 INSTRUCTION FINE-TUNING

We followed the instruction-tuning pipeline outlined by (Liu et al., 2023b). As depicted in Fig. 2,
our model architecture includes an image encoder, an linear projector, a language tokenizer, and
a transformer-based language model. The image encoder processes images into tokens, which are
projected by a 2-layer linear into the same space as the language tokens. These multimodal tokens
are then concatenated and passed through the language transformer. All components are initialized
with pre-trained weights. During fine-tuning, only the projector and transformer weights are updated,
while the vision encoder and tokenizer remain frozen. The model operates autoregressively, with the
objective of predicting response tokens and a special token marking the boundary between instruction
and response.

5 EXPERIMENTAL RESULTS

In this section, we first evaluate the detection and reasoning performance of AHA against six state-
of-the-art VLMs, both open-source and proprietary, including those utilizing in-context learning.
We perform these evaluations across three diverse datasets, covering out-of-domain tasks, various
simulation environments, and cross-embodiment scenarios. Next, we assess AHA’s generalization
capabilities and its retention of general world knowledge, a key attribute expected from VLMs. We
evaluate whether this knowledge is preserved after fine-tuning on domain-specific data. Lastly, we
explore the potential for AHA to enhance downstream robotic manipulation tasks.

8



Table 5: Quantitative Evaluation on Standard VQA Benchmarks. AHA-13B performs on par
with LLaVA-13B Liu et al. (2023a), the VLM from which AHA adapts its fine-tuning strategy.

MMBench (Liu et al., 2023c) ScienceQA (Lu et al., 2022) TextVQA (Singh et al., 2019) POPE (Li et al., 2023) VizWiz (Gurari et al., 2018)

LLaVA-13B (LLama-2) (Liu et al., 2023a) 67.70 73.21 67.40 88.00 53.01
AHA-13B (LLama-2) 65.20 71.94 65.20 85.74 53.45

5.1 EXPERIMENTAL SETUP

To quantitatively evaluate AHA’s detection and reasoning capabilities for failures in robotic manipu-
lation, we curated two datasets and adapted an existing failure dataset for benchmarking. To ensure a
fair comparison of free-form language reasoning, we also employed four different evaluation metrics
to measure semantic similarity between sentences.

Benchmarks We curated three datasets to evaluate AHA’s reasoning and failure detection capabilities,
benchmarking against other state-of-the-art VLMs. The first dataset, AHA dataset (Test), includes
11k image-question pairs from 10 RLBench tasks, generated similarly to the fine-tuning data via
FailGen (Section 3.2) but without overlapping with the tasks from the finetuning dataset. It
evaluates AHA’s ability to generalize to novel, out-of-domain tasks. The second dataset, ManiSkill-
Fail, comprises 130 image-question pairs across four tasks in ManiSkill (Mu et al., 2021), generated
using Failgen wrapper on Maniskill simulator. This dataset assesses AHA’s performance in a
different simulator and under changing viewpoints. Lastly, we adapted a failure benchmark from
the RoboFail dataset (Liu et al., 2023d) (which is the one of the fewer robot failure dataset ever
being curated), which features real-world robot failures in seven UR5 robot tasks. This allows for
evaluation across real-world trajectories and different embodiment’s.

Baselines We compare AHA against three state-of-the-art open-source VLMs: LLaVA-1.5, LLaVA-
NeXT, and Qwen-VL, as well as two proprietary VLMs: GPT-4o and Gemini 1.5 Flash. Additionally,
we evaluated in-context learning (GPT-4o-ICL) by providing 5 input-output pairs from our each of
the evaluation datasets as demonstrations.

Evaluation Metrics To ensure fair and accurate evaluation across the three datasets and all baseline
methods on success detection and free language reasoning, we utilize four evaluation metrics. First,
the ROUGE-L score assesses the quality of generated text in tasks like summarization and machine
translation by measuring the similarity between the candidate text and a reference text, focusing on
the Longest Common Subsequence (LCS) of words. Second, we employ Cosine Similarity rather
than distance to evaluate the similarity between text documents, sentences, or word embeddings
by representing them as high-dimensional vectors to avoid the "curse of dimensionality". Third,
LLM Fuzzy Matching uses an external language model to assess the semantic similarity between
the reference sentence and predicted sentences in a teacher-student prompting format; specifically,
we leverage an unseen language model, claude-3-sonnet from Anthropic for evaluating the
LLM Fuzzy Matching score. Lastly, we evaluate the model’s predictions against the ground truth for
success detection using a Binary success rate.

5.2 QUANTITATIVE EXPERIMENTAL RESULTS

We contextualize the performance of AHA by conducting a systematic evaluation of failure reasoning
and detection across these three datasets, general VQA datasets, and performed ablation studies.

AHA generalizes across embodiments, unseen environments, and novel tasks. To ensure fairness
and eliminate bias in the detection and reasoning capabilities of AHA, we evaluated it on three
different datasets that were never seen during fine-tuning, each designed to test a specific form of
generalization. First, on the AHA dataset (test) dataset, AHA demonstrated its ability to generalize
reasoning across tasks and new behaviors within the same domain, outperforming the second-
best performing VLM, GPT-4o, by an average margin of 0.126 across all evaluation metrics.
Second, we assessed AHA-13B on a dataset generated by the Failgen wrapper in a different
simulation domain, ManiSkill, showing that our model outperforms GPT-4o-ICL by an average of
0.134 across all metrics. Lastly, to demonstrate generalization to real-world robots and different
embodiments, we evaluated AHA-13B on RoboFail (Liu et al., 2023d), where it outperforms
GPT-4o-ICL by 0.049.
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Figure 4: Downstream Robotic Application. We demonstrated that AHA can be integrated into
existing LLM/VLM-assisted robotic applications to provide failure reasoning and feedback, helping
to accelerate and improve task success rates in these systems.

Figure 3: Scaling law with the AHA dataset. Scal-
ing of effect of model performance with varying
domain specific fine-tuning data.

AHA retains common sense knowledge. We
evaluated AHA-13B’s performance on various
VQA benchmarks and present the results in
Table 5 . AHA-13B performs comparably
to LLaVA-v1.5-13B (LLama-2) (Liu et al.,
2023a) , with only a 1.5% margin difference
as depicted in Table 5. Notably, LLaVA-v1.5-
13B is a VLM trained on the same pre-trained
weights as AHA-13B but fine-tuned on VQA
data. This indicates that AHA-13B is capable
of functioning as a general purpose VLM, in
addition to excelling at failure reasoning.

AHA’s performance scales with data size. We
evaluated Aha’s performance using a range of
AHA data for instruction fine-tuning, spanning
[3k, 6k, 12k, 34k, 48k, 60k], and co-trained
individual checkpoints corresponding to these
data sizes as shown in Figure 3. The model was
then assessed on the ManiSkill-Fail dataset across four evaluation metrics. A linear fit of the results
showed an average slope of 0.0021 across all metrics, indicating a clear scaling effect with fine-
tuning on our procedurally generated data pipeline. This suggests that further scaling of the
generated data may lead to improved model performance.

5.3 DOWNSTREAM ROBOTICS TASKS

We demonstrate that AHA’s failure detection and reasoning capabilities are useful across a wide
spectrum of downstream robotics applications. This includes automatic reward generation for
reinforcement learning applications (Ma et al., 2023), automatic task plan generation for task and
motion planning applications (Curtis et al., 2024), and as an improved verification step for automatic
data generation systems (Duan et al., 2024). Videos and detailed improved reward function, task plan,
example videos from each applications and etc can be found on the project page: aha-vlm.github.io/.

AHA enables efficient reward synthesis for reinforcement learning. To evaluate this downstream
task, we adapted Eureka’s (Ma et al., 2023) implementation to the ManiSkill simulator, which offers
more state-based manipulation tasks. We strictly followed the Eureka reward function generation and
reflection pipeline, modifying it by incorporating perception failure feedback via either AHA-13B or
GPT-4o (acting as a baseline) to enhance the original LLM reflection mechanism. Instead of only
including a textual summary of reward quality based on policy training statistics for automated reward
editing, we further incorporated explanations of policy failures based on evaluation rollouts. We
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Figure 5: Downstream Robotic Application Performance. AHA-13B outperforms GPT-4o in
reasoning about failures within these robotic applications, leading to improved performance of the
downstream tasks.

evaluated our approach on five reinforcement learning tasks from ManiSkill, ranging from tabletop to
mobile manipulation. To systematically assess the reasoning capabilities of different VLMs under
budget constraints, we sampled one reward function initially and allowed for iterations over two
sessions of GPT API calls. Each policy was trained using PPO over task-specific training steps and
evaluated across 1,000 test steps. During policy rollouts, we employed either AHA-13B or GPT-4o
for reward reflection to improve the reward function. Comparing the evaluated policy success rates
using different failure feedback VLMs, we observed that AHA-13B provided intuitive, human-level
failure reasoning that aided in modifying and improving generated dense reward functions. This
resulted in success across all five tasks within the budget constraints, and our approach outperformed
GPT4o by a significant margin of 22.34% in task success rate shown in Figure 5.

AHA refines task-plan generation for TAMP. To demonstrate AHA’s utility within a planning
system, we incorporated our approach into PRoC3S (Curtis et al., 2024). The PRoC3S system solves
tasks specified in natural language by prompting an LLM for a Language-Model Program (LMP) that
generates plans, and then testing a large number of these plans within a simulator before executing
valid plans on a robot. If no valid plan can be found within a certain number of samples (100 in our
experiments), the LLM is re-prompted for a new LMP given failure information provided by the
environment. Importantly, as is typical of TAMP methods, the original approach checks for a finite
set of failures (inverse kinematics, collisions, etc.) from the environment, and returns any sampled
plan that does not fail in any of these ways. We incorporated a VLM into this pipeline in two ways:
(1) we prompt the VLM with visualizations of failed plan executions within the simulator, ask it to
return an explanation for the failure, and feed this back to PRoC3S’ LLM during the LMP feedback
stage, (2) after PRoC3S returns a valid plan, we provide a visualization of this to the VLM and ask
it to return whether this plan truly achieves the natural language goal, with replanning triggered if
not. We compared GPT-4o and AHA-13B as the VLM-based failure reasoning modules within this
implementation of PRoC3S across three tasks (shown in Figure 4). Each task was evaluated over 10
trials, with a maximum of 100 sampling steps and three feedback cycles provided by either GPT-4o
or AHA-13B. The success rate for each task was recorded. As shown in Figure 5, utilizing AHA-13B
for failure reasoning significantly improved the task success rate and outperforming GPT-4o by
a substantial margin of 36.7%.

AHA improves task verification for zero-shot robot data generation. To demonstrate
AHA’s utility in zero-shot robot demonstration generation, we integrated our approach into the
Manipulate-Anything framework. This open-ended system employs various Vision-Language
Models (VLMs) to generate diverse robot trajectories and perform a wide range of manipula-
tion tasks without being constrained by predefined actions or scenarios. A critical component
of Manipulate-Anything is its sub-task verification module, which analyzes past and current
frames to decide whether a sub-task has been achieved before proceeding or re-iterating over the
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previous sub-task. We replaced the original VLM (GPT-4V) in the sub-task verification module with
AHA-13B and evaluated performance across four RLBench tasks (Figure 4), conducting 25 episodes
for each task. Our results show that substituting the sub-task verification module’s VLM with
AHA improved reasoning accuracy and overall task success by an average of 5%.

6 CONCLUSION

Limitations AHA currently outputs language reasoning that is closely aligned with the failure
scenarios in the fine-tuning data. However, we aim to capture more open-ended failures, such as
those arising from large pretrained policies like OpenVLA (Kim et al., 2024), RT2 (Brohan et al.,
2023), and Octo (Team et al., 2024). Additionally, while FailGen systematically curates failure
data from simulations, distilling large pretrained policies to perform diverse tasks in simulation and
sampling various failure modes would allow us to generate more open-ended failure examples. This
could significantly enhance the instruction-tuning of AHA.

Conclusion In conclusion, this work presents AHA, an open-source vision-language model that
significantly advances the ability of robotic systems to detect and reason about failures in manipulation
tasks through natural language. By framing failure detection as a free-form reasoning task, AHA
not only identifies failures but also provides detailed explanations that are adaptable across various
robots, tasks, and environments in both simulation and real-world scenarios. The development of
FailGen and the curation of the AHA dataset have been instrumental in fine-tuning AHA, enabling
the generation of a large and diverse dataset of robotic failure trajectories for robust training. Our
extensive evaluations demonstrate that AHA surpasses the second-best model by 10% and exceeds
the average performance of all six compared models—including five state-of-the-art VLMs and one
model employing in-context learning—by 30% across multiple metrics and datasets. When integrated
into three different VLM/LLM-assisted manipulation frameworks, AHA’s natural language failure
feedback leads to significant improvements in error recovery and policy performance, achieving an
average task success rate 21.4% higher than that of GPT-4 models. These results underscore the
effectiveness of AHA in enhancing downstream task performance through accurate error detection and
correction. This work highlights the critical importance of enabling robots to recognize and learn from
their failures—a key step toward developing truly intelligent and autonomous systems. By providing
a scalable framework for failure detection and reasoning, we open new avenues for research in robotic
learning and adaptation. Future work will explore the integration of AHA into more complex robotic
systems and tasks, as well as the expansion of FailGen to include a wider range of failure scenarios.
We believe that this approach will significantly contribute to the advancement of robotic manipulation
in open-world settings, ultimately bringing us closer to robots that can seamlessly operate alongside
humans in real-world environments.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716–23736,
2022.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Danny Driess, Pete Florence, Dorsa Sadigh,
Leonidas Guibas, and Fei Xia. Spatialvlm: Endowing vision-language models with spatial
reasoning capabilities. arXiv preprint arXiv:2401.12168, 2024.

12



Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Aidan Curtis, Nishanth Kumar, Jing Cao, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Trust the
proc3s: Solving long-horizon robotics problems with llms and constraint satisfaction, 2024. URL
https://arxiv.org/abs/2406.05572.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multimodal
language model. arXiv preprint arXiv:2303.03378, 2023.

Yuqing Du, Ksenia Konyushkova, Misha Denil, Akhil Raju, Jessica Landon, Felix Hill, Nando
de Freitas, and Serkan Cabi. Vision-language models as success detectors. arXiv preprint
arXiv:2303.07280, 2023.

Jiafei Duan, Samson Yu, Hui Li Tan, Hongyuan Zhu, and Cheston Tan. A survey of embodied ai:
From simulators to research tasks. IEEE Transactions on Emerging Topics in Computational
Intelligence, 6(2):230–244, 2022.

Jiafei Duan, Wentao Yuan, Wilbert Pumacay, Yi Ru Wang, Kiana Ehsani, Dieter Fox, and Ranjay
Krishna. Manipulate-anything: Automating real-world robots using vision-language models. arXiv
preprint arXiv:2406.18915, 2024.

Roya Firoozi, Johnathan Tucker, Stephen Tian, Anirudha Majumdar, Jiankai Sun, Weiyu Liu, Yuke
Zhu, Shuran Song, Ashish Kapoor, Karol Hausman, et al. Foundation models in robotics: Applica-
tions, challenges, and the future. arXiv preprint arXiv:2312.07843, 2023.

Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Pddlstream: Integrating
symbolic planners and blackbox samplers via optimistic adaptive planning. In Proceedings of the
international conference on automated planning and scheduling, volume 30, pp. 440–448, 2020.

Alison Gopnik. Childhood as a solution to explore–exploit tensions. Philosophical Transactions of
the Royal Society B, 375(1803):20190502, 2020.

Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary instance
segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 5356–5364, 2019.

Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
Jeffrey P Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3608–3617,
2018.

Huy Ha, Pete Florence, and Shuran Song. Scaling up and distilling down: Language-guided robot
skill acquisition. In Conference on Robot Learning, pp. 3766–3777. PMLR, 2023.

Gail D Heyman. Children’s critical thinking when learning from others. Current directions in
psychological science, 17(5):344–347, 2008.

Ryan Hoque, Ajay Mandlekar, Caelan Garrett, Ken Goldberg, and Dieter Fox. Intervengen: Inter-
ventional data generation for robust and data-efficient robot imitation learning. arXiv preprint
arXiv:2405.01472, 2024.

Yafei Hu, Quanting Xie, Vidhi Jain, Jonathan Francis, Jay Patrikar, Nikhil Keetha, Seungchan Kim,
Yaqi Xie, Tianyi Zhang, Zhibo Zhao, et al. Toward general-purpose robots via foundation models:
A survey and meta-analysis. arXiv preprint arXiv:2312.08782, 2023.

13

https://arxiv.org/abs/2406.05572


Haoxu Huang, Fanqi Lin, Yingdong Hu, Shengjie Wang, and Yang Gao. Copa: General robotic
manipulation through spatial constraints of parts with foundation models. arXiv preprint
arXiv:2403.08248, 2024a.

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
Composable 3d value maps for robotic manipulation with language models. arXiv preprint
arXiv:2307.05973, 2023.

Wenlong Huang, Chen Wang, Yunzhu Li, Ruohan Zhang, and Li Fei-Fei. Rekep: Spatio-temporal rea-
soning of relational keypoint constraints for robotic manipulation. arXiv preprint arXiv:2409.01652,
2024b.

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rlbench: The robot
learning benchmark & learning environment. IEEE Robotics and Automation Letters, 5(2):3019–
3026, 2020.

Parag Khanna, Elmira Yadollahi, Mårten Björkman, Iolanda Leite, and Christian Smith. User study
exploring the role of explanation of failures by robots in human robot collaboration tasks. arXiv
preprint arXiv:2303.16010, 2023.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis,
et al. Droid: A large-scale in-the-wild robot manipulation dataset. arXiv preprint arXiv:2403.12945,
2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Xiang Li, Cristina Mata, Jongwoo Park, Kumara Kahatapitiya, Yoo Sung Jang, Jinghuan Shang,
Kanchana Ranasinghe, Ryan Burgert, Mu Cai, Yong Jae Lee, et al. Llara: Supercharging robot
learning data for vision-language policy. arXiv preprint arXiv:2406.20095, 2024.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
hallucination in large vision-language models. arXiv preprint arXiv:2305.10355, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Fangchen Liu, Kuan Fang, Pieter Abbeel, and Sergey Levine. Moka: Open-vocabulary robotic
manipulation through mark-based visual prompting. arXiv preprint arXiv:2403.03174, 2024a.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning, 2023a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023b.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, 2024b.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player?
arXiv preprint arXiv:2307.06281, 2023c.

Zeyi Liu, Arpit Bahety, and Shuran Song. Reflect: Summarizing robot experiences for failure
explanation and correction. arXiv preprint arXiv:2306.15724, 2023d.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. In The 36th Conference on Neural Information Processing Systems
(NeurIPS), 2022.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training.
arXiv preprint arXiv:2210.00030, 2022.

14



Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. arXiv preprint arXiv:2310.12931, 2023.

Yecheng Jason Ma, William Liang, Hung-Ju Wang, Sam Wang, Yuke Zhu, Linxi Fan, Osbert Bastani,
and Dinesh Jayaraman. Dreureka: Language model guided sim-to-real transfer. arXiv preprint
arXiv:2406.01967, 2024.

Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Iretiayo Akinola, Yashraj Narang, Linxi Fan, Yuke
Zhu, and Dieter Fox. Mimicgen: A data generation system for scalable robot learning using human
demonstrations. arXiv preprint arXiv:2310.17596, 2023.

Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Yang, Xuanlin Li, Stone Tao, Zhiao Huang, Zhi-
wei Jia, and Hao Su. Maniskill: Generalizable manipulation skill benchmark with large-scale
demonstrations. arXiv preprint arXiv:2107.14483, 2021.

OpenAI. Hello gpt-4o, May 2024. URL https://openai.com/index/hello-gpt-4o.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex Irpan, Alexander
Khazatsky, Anant Rai, Anikait Singh, Anthony Brohan, et al. Open x-embodiment: Robotic
learning datasets and rt-x models. arXiv preprint arXiv:2310.08864, 2023.

Wilbert Pumacay, Ishika Singh, Jiafei Duan, Ranjay Krishna, Jesse Thomason, and Dieter Fox. The
colosseum: A benchmark for evaluating generalization for robotic manipulation. arXiv preprint
arXiv:2402.08191, 2024.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Amanpreet Singh, Vivek Natarjan, Meet Shah, Yu Jiang, Xinlei Chen, Devi Parikh, and Marcus
Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 8317–8326, 2019.

Marta Skreta, Zihan Zhou, Jia Lin Yuan, Kourosh Darvish, Alán Aspuru-Guzik, and Animesh
Garg. Replan: Robotic replanning with perception and language models. arXiv preprint
arXiv:2401.04157, 2024.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Julen Urain, Ajay Mandlekar, Yilun Du, Mahi Shafiullah, Danfei Xu, Katerina Fragkiadaki, Georgia
Chalvatzaki, and Jan Peters. Deep generative models in robotics: A survey on learning from
multimodal demonstrations. arXiv preprint arXiv:2408.04380, 2024.

Lirui Wang, Yiyang Ling, Zhecheng Yuan, Mohit Shridhar, Chen Bao, Yuzhe Qin, Bailin Wang,
Huazhe Xu, and Xiaolong Wang. Gensim: Generating robotic simulation tasks via large language
models. arXiv preprint arXiv:2310.01361, 2023a.

Yi Ru Wang, Jiafei Duan, Dieter Fox, and Siddhartha Srinivasa. Newton: Are large language models
capable of physical reasoning? arXiv preprint arXiv:2310.07018, 2023b.

Annie Xie, Lisa Lee, Ted Xiao, and Chelsea Finn. Decomposing the generalization gap in imitation
learning for visual robotic manipulation. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3153–3160. IEEE, 2024.

15

https://openai.com/index/hello-gpt-4o


Sean Ye, Glen Neville, Mariah Schrum, Matthew Gombolay, Sonia Chernova, and Ayanna Howard.
Human trust after robot mistakes: Study of the effects of different forms of robot communication.
In 2019 28th IEEE International Conference on Robot and Human Interactive Communication
(RO-MAN), pp. 1–7. IEEE, 2019.

H Peyton Young. Learning by trial and error. Games and economic behavior, 65(2):626–643, 2009.

Samson Yu, Kelvin Lin, Anxing Xiao, Jiafei Duan, and Harold Soh. Octopi: Object property
reasoning with large tactile-language models. arXiv preprint arXiv:2405.02794, 2024.

Wentao Yuan, Jiafei Duan, Valts Blukis, Wilbert Pumacay, Ranjay Krishna, Adithyavairavan Murali,
Arsalan Mousavian, and Dieter Fox. Robopoint: A vision-language model for spatial affordance
prediction for robotics. arXiv preprint arXiv:2406.10721, 2024.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 3836–3847, 2023.

16


	Introduction
	Related Work
	The Aha Dataset
	Failure Modes in Robotic Manipulation
	Implementation of the Aha dataset

	Method
	Failure Reasoning Formulation
	Synthetic Data for Instruction-tuning
	Instruction Fine-tuning

	Experimental Results
	Experimental Setup
	Quantitative Experimental Results
	Downstream Robotics Tasks

	Conclusion

